

Our Life Is Maintained by Molecular Network Systems

10

		ties and conventions associated with the common Amil pK_a values					J AGIUS FU	und in Protein	S
Amino acid	Abbrev sym	riation/ bol	M _r	рК ₁ (—СООН)	рК ₂ (—NH ₃ +)	pK _R (R group)	pl	Hydropathy index*	Occurrence ir proteins (%) ¹
Nonpolar, aliphatic									
R groups									
Glycine	Gly	G	75	2.34	9.60		5.97	-0.4	7.2
Alanine	Ala	A	89	2.34	9.69		6.01	1.8	7.8
Proline	Pro	Р	115	1.99	10.96		6.48	1.6	5.2
Valine	Val	V	117	2.32	9.62		5.97	4.2	6.6
Leucine	Leu	L	131	2.36	9.60		5.98	3.8	9.1
Isoleucine	lle	1	131	2.36	9.68		6.02	4.5	5.3
Methionine	Met	Μ	149	2.28	9.21		5.74	1.9	2.3
Aromatic R groups									
Phenylalanine	Phe	F	165	1.83	9.13		5.48	2.8	3.9
Tyrosine	Tyr	Y	181	2.20	9.11	10.07	5.66	-1.3	3.2
Tryptophan	Trp	W	204	2.38	9.39		5.89	-0.9	1.4

105-132.

¹Average occurrence in more than 1,150 proteins. From Doolittle, R.F. (1989) Redundancies in protein sequences. In Prediction of Protein Structure and the Principles of Protein Conformation (Fasman, G.D., ed.), pp. 599-623, Plenum Press, New York.

				pK _a values				
Amino acid	Abbrevia symbo	ntion/ ol M _r	рК ₁ (—СООН)	рК ₂ (—NH ₃ +)	рК _R (R group)	pl	Hydropathy index*	Occurrence ir proteins (%)
Polar, uncharged								
R groups								
Serine	Ser S	6 105	2.21	9.15		5.68	-0.8	6.8
Threonine	Thr T	119	2.11	9.62		5.87	-0.7	5.9
Cysteine	Cys (2 121	1.96	10.28	8.18	5.07	2.5	1.9
Asparagine	Asn M	132	2.02	8.80		5.41	-3.5	4.3
Glutamine	Gln () 146	2.17	9.13		5.65	-3.5	4.2
Positively charged								
R groups								
Lysine	Lys ł	(146	2.18	8.95	10.53	9.74	-3.9	5.9
Histidine	His H	155	1.82	9.17	6.00	7.59	-3.2	2.3
Arginine	Arg F	R 174	2.17	9.04	12.48	10.76	-4.5	5.1
Negatively charged								
R groups								
Aspartate	Asp [) 133	1.88	9.60	3.65	2.77	-3.5	5.3
Glutamate	Glu E	147	2.19	9.67	4.25	3.22	-3.5	6.3

*A scale combining hydrophobicity and hydrophilicity of R groups; it can be used to measure the tendency of an amino acid to seek an aqueous environment (- values) or a hydrophobic environment (+ values). See Chapter 11. From Kyte, J. & Doolittle, R.F. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105-132.

¹Average occurrence in more than 1.150 proteins. From Doolttle, R.F. (1989) Redundancies in protein sequences. In Prediction of Protein Structure and the Principles of Protein Conformation (Fasman, G.D., ed.), pp. 599–623, Plenum Press, New York.

Replace -ine by -yl but keep the last -ine !

Ala-Gly-Arg

Alanylglycylarginine

Structure of Proteins

Primary structure Secondary structure Tertiary structure Quaternary structure

	Molecular weight	Number of residues	Number of polypeptide chains
Cytochrome c (human)	13,000	104	1
Ribonuclease A (bovine pancreas)	13,700	124	1
Lysozyme (chicken egg white)	13,930	129	1
Myoglobin (equine heart)	16,890	153	1
Chymotrypsin (bovine pancreas)	21,600	241	3
Chymotrypsinogen (bovine)	22,000	245	1
Hemoglobin (human)	64,500	574	4
Serum albumin (human)	68,500	609	1
Hexokinase (yeast)	102,000	972	2
RNA polymerase (<i>E. coli</i>)	450,000	4,158	5
Apolipoprotein B (human)	513,000	4,536	1
Glutamine synthetase (E. coli)	619,000	5,628	12
Titin (human)	2,993,000	26,926	1

	Amino Acid C Two Proteins	omposition of
	Numbe per molec	r of residues rule of protein*
Amino acid	Bovine cytochrome c	Bovine chymotrypsinogen
Ala	6	22
Arg	2	4
Asn	5	15
Asp	3	8
Cys	2	10
Gln	3	10
Glu	9	5
Gly	14	23
His	3	2
lle	6	10
Leu	6	19
Lys	18	14
Met	2	2
Phe	4	6
Pro	4	9
Ser	1	28
Thr	8	23
Тгр	1	8
Tyr	4	4
Val	3	23
Total	104	245

TABLE 3–4 Cor	njugated Proteins	
Class	Prosthetic group	Example
Lipoproteins	Lipids	$m eta_1$ -Lipoprotein of blood
Glycoproteins	Carbohydrates	Immunoglobulin G
Phosphoproteins	Phosphate groups	Casein of milk
Hemoproteins	Heme (iron porphyrin)	Hemoglobin
Flavoproteins	Flavin nucleotides	Succinate dehydrogenase
Metalloproteins	Iron	Ferritin
	Zinc	Alcohol dehydrogenase
	Calcium	Calmodulin
	Molybdenum	Dinitrogenase
	Copper	Plastocyanin

Peptide & Protein Charge

Arg-Ser-Gly-Asn-Gly-Phe-Pro-Lys-Met-Glu

pl = ?

Group	pKa	pH=1	pH=3	pH=7	pH=10	pH=11	pH=13
-COOH	2.2	0	-	-	-	-	-
-NH2	8.8	+	+	+	0	0	0
Glu	4.3	0	0	-	-	-	-
Lys	10.8	+	+	+	+	0	0
Arg	12.5	+	+	+	+	+	0
Net Charge		+3	+2	+1	0	-1	-2

pl = (8.8 + 10.8)/2 = 9.8

Protein Separation/Purification

- In general, proteins contain > 40 residues
 Minimum needed to fold into tertiary structure
- Usually 100-1000 residues; percent of each AA varies
- Proteins separated based on differences in size and composition
- Proteins must be pure to analyze, determine structure/ function
- Factors to control (to avoid denaturation or chemical degradation)
 - pH
 - Presence of enzymes
 - Temperature
 - Reactive thiol groups
 - Exposure to air, water

Methods of Separation/ Purification • Solubility (salts, solvents, pH, temperature) • Chromatography – Ion exchange – Gel filtration – Affinity • Electrophoresis

TABLE 3–5	A Purification Table for a Hy	pothetical Enzyme			
Procedure or step		Fraction volume (mL)	Total protein (mg)	Activity (units)	Specific activity (units/mg)
1. Crude cellula	r extract	1,400	10,000	100,000	10
2. Precipitation	with ammonium sulfate	280	3,000	96,000	32
3. Ion-exchang	e chromatography	90	400	80,000	200
4. Size-exclusio	n chromatography	80	100	60,000	600
5. Affinity chro	matography	6	3	45,000	15,000
te: All data repres ined on page 91. ole 3-5 ninger Principles of Bio 008 W. H. Freeman and O	ent the status of the sample after t chemistry, Fifth Edition ompany	he designated procedur	e has been carried ou	t. Activity and sp	ecific activity are

TABLE 3–6	The Isoelectric Pe of Some Proteins	oints s
Protein		pl
Pepsin	<	<1.0
Egg albumin		4.6
Serum album	in	4.9
Urease		5.0
β-Lactoglobu	llin	5.2
Hemoglobin		6.8
Myoglobin		7.0
Chymotrypsi	nogen	9.5
Cytochrome o	:	10.7
Lysozyme		11.0

A Common Strategy for Protein Sequencing

Protein chemists follow a basic strategy when they attempt to determine the sequence of most proteins. This strategy is outlined below. Keep in mind that this strategy is only a guide, and should not inhibit your own ingenuity in solving the sequence of a protein.

Determine the Amino Acid Composition

In order to know which amino acids and how many of each amino acid there are in a polypeptide, we must break the peptide bonds. This can be accomplished with strong acids (i.e. 6N HCl) or strong bases or b y exhaustive enzymatic digestion. By performing an acid hydrolysis or base hydrolysis experiment you obtain a minimum length for the polypeptide. The hydrolyzed amino acids are then grouped into different groups according to their pI values, and each amino acid are isolated by HPLC with pH gradient buffer, and determined by react ing with nihydrin. The concentration of individual amino acid are normalized to in tegral number, and by comparing with the molecular weight, the actual number of individual amino acids within that particular protein can be determined.

TABLE 3–7	The Specificity of Some Common Methods for Fra Polypeptide Chains	agmenting
Reagent (biolog	jical source)*	Cleavage points [†]
Trypsin (boviı	ne pancreas)	Lys, Arg (C)
Submaxillarus	protease (mouse submaxillary gland)	Arg (C)
Chymotrypsir	(bovine pancreas)	Phe, Trp, Tyr (C)
Staphylococcu	<i>aureus</i> V8 protease (bacterium <i>S. aureus</i>)	Asp, Glu (C)
Asp- <i>N</i> -protea	Asp, Glu (N)	
Pepsin (porcir	ne stomach)	Leu, Phe, Trp, Tyr (N)
Endoproteina	se Lys C (bacterium <i>Lysobacter enzymogenes</i>)	Lys (C)
Cyanogen bro	mide	Met (C)

Lehninger Principles of Biochemistry, Fifth Edition © 2008 W. H. Freeman and Company

Repeat Steps 3 and 4 to Determine Sub-sequences and Create OOverlappingsO

The initial cleavage is generally made as specific as possible in order to generate large peptide fragments. It is easy to arrange fewer fragments. These fragments can be positioned relative to one another after treatment of the original polypeptide by a second cleavage procedure that generates fragments whose sequences extend across the initial cleavage points (referred to as overlapping peptides).

Locate the Disulfide Bonds

No primary structure analysis of a cysteine-containing protein can be regarded as complete before the presence and location of disulfide bonds has been established.

Reconstruct the Original Protein.

From the overlapping peptides and information gained from the original protein, a unique sequence for the protein or polypeptide of interest can be worked out.

Amino acid sequence Me	t — His — Phe — Thr — Asn — Arg — Tyr — Ser
Reading frame 1 5' A U	G C A C U U U A C U A A C C G C U A U U C C
Other mRNA sequences that specify the same amino acid sequence	C A U U U C A C C A A U C G U U A C U C U A C A A C G C G A U C G A C G A C G A G A A G G
	(a)
Amino acid sequence	$\frac{G C [A C U] U U A [C U A] A C C [G C U] A U U] C C a}{Cys - Thr - Leu - Leu - Thr - Ala - Ile}$
Other amino acids resulting from the alternative mRNA sequences shown above for reading frame 1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
frame r	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

The Third approached the animal, The Blind Men and the Elephant And happening to take The squirming trunk within his hands, by John Godfrey Saxe Thus boldly up and spake: "I see," quoth he, "the Elephant Is very like a snake!" American poet John Godfrey Saxe (1816-1887) based the following poem on a fable which was told in India many years ago. The Fourth reached out an eager hand, The Blind Men and the Elephant What how the knee. "What most this wondrous beast is like Is mighty plain," quoth he; " 'Tis clear enough the Elephant Is very like a tree!" It was six men of Indostan To learning much inclined, Who went to see the Elephant (Though all of them were blind), The Fifth, who chanced to touch the ear, Said: "E'en the blindest man Can tell what this resembles most; Deny the fact who can That each by observation Might satisfy his mind The First approached the Elephant, This marvel of an Elephant Is very like a fan!? And happening to fall Against his broad and sturdy side, At once began to bawl: "God bless me! but the Elephant Is very like a wall!" The Sixth no sooner had begun About the beast to grope, Than, seizing on the swinging tail That fell within his scope, "I see," quoth he, "the Elephant Is very like a rope!" The Second, feeling of the tusk, Cried, "Ho! what have we here So very round and smooth and sharp? To me 'tis mighty clear And so these men of Indostan Disputed loud and long, Each in his own opinion This wonder of an Elephant Is very like a spear!" Exceeding stiff and strong, Though each was partly in the right, And all were in the wrong! The Third approached the animal, And happening to take The squirming trunk within his hands, Thus boldly up and spake: "I see," quoth he, "the Elephant Is very like a snake!"

TABLE 3–8	ABLE 3–8 Effect of S Yield in P		o Overall
Number of residu	ocin	Overall yi peptide (% yield of ea	eld of final b) when the ach step is:
the final polypeptide		96.0%	99.8 %
11		64	98
21		42	96
31	31		94
51	51		90
100		1.7	82